

© DP Harshman All Rights Reserved Page 1 of 19
www.fromtheranks.com

NotesOn: Project Management – IT Testing 101

Introduction (V1.3):

The opportunity is just too good to pass up. Absolutely classic. Setting all political discussions aside, after
three and a half years and tens to hundreds of millions of dollars (depending on to whom you listen) invested,
the release of the “Obamacare” website was an unmitigated disaster. There couldn’t be a better poster child
example of how not to run a project, of any magnitude. But. In particular. How not to test. Of course it isn’t
the only such site: Federals, States, Locals, Commercials and Privates have a litany of disastrous Go-Lives to
their “credit”. To help you prevent such disasters in your IT Life I present the fundamentals of testing.

Introduction (V1.3): 1

Ref: 1

Assumptions: 1

Background: 2

Q: Why Test? A: Risk Management Of Course 3

What Is An SDLC? 4

Q: Why An SDLC? A: Risk Management Of Course 5

The Testing Classes & Types Diagram: 6

Behind The Diagram: 7
Requirements: 7
Prototyping/Proof Of Concept: 8
Unit Tests: 9
Integration: 11
System: 13
User Acceptance: 16

Root Cause: 18

Summary: 19

Ref:

NotesOn: The Four Fundamental Life Cycles of IT

Assumptions:

There are some assumptions that I need to declare before we get into the heart of the core matter of Testing:

1. A successful system requires a solid, well thought out, properly designed database. The database, the
data handling if you will, is the foundation for the rest of the system. All of the rest of the system. If
your data handling is “messed up” the amount of code required to work around that state is absolutely
mind boggling. The reverse is also true. If your data handling scheme is “dialed in”, the code logic

http://www.fromtheranks.com/1214/fundamentals/noteson-the-four-fundamental-life-cycles-of-it/�

© DP Harshman All Rights Reserved Page 2 of 19
www.fromtheranks.com

surrounding it will be easy to develop and easier to maintain. Poor database designs require an
extraordinary amount of testing too.

2. Speaking of design, a proper, well thought out design is wholly dependent upon a thorough
requirements phase and complete documentation. You will never achieve the “perfect set” of
requirements” on a new system. The best you can hope for is 80%-90%, with 90% being close to a
miracle. But. You must make sure that you don’t miss any “big chunks” (which, as one reason, can
occur by not including all of the stakeholders) during requirements gathering and must not miss
anything but the “smallest stuff” during the design phase. Both of these potential pitfalls can be
mitigated to a large degree by following the advices in this post.

3. Another big one, which I’ve mentioned elsewhere, is calling someone a Project Manager who is not.

Background:

This post, actually portions of this post have been laying around on the drafting table, or in a drawer, or “new
idea” file folder on the computer for some while. I would chip away at it from time to time (as bandwidth
allowed) but I didn’t assign a high priority to its completion as I “assumed” most everyone in IT knew how to
do testing in IT, at least at some reasonable level of proficiency, whether on a from-scratch system or a COTS
(Commercial Off The Shelf) one.

Except. I’m not sure that is the case. Not anymore anyway.

Clearly, within certain segments of the U.S. Federal Government that is not the case. Or within some State
Governments. As but one notable example from the past, some years ago California spent a LOT of money
(for the time) on a new Department of Motor Vehicles system that failed rather spectacularly.

And how many high profile web based systems have been in the news after being hacked? Divulging tens if
not hundreds of millions of personal records, combined, to the less than stellar citizens of the world.

The question is: Why? As in Why such spectacular failures? Not always the only answer, but a primary one is:
lacking of testing. More accurately, lack of proper testing.

I am reasonably sure that the “Obamacare” website was tested. 6 Point Type tested.

Which is to say: sort of kind of tested. About like some brands of Clam Chowder (a soup) in which a single
clam is passed over the cooking pot on its way back into the freezer, to be saved for the next batch.

When it should have been 26 Point Type TESTED.

So. The following describes how you TEST a system. As in try to break the system test it. Ensure the users can
use it test it. Confirm it performs as expected under anticipated loads test it. As in … Well, you get the
picture.

© DP Harshman All Rights Reserved Page 3 of 19
www.fromtheranks.com

Q: Why Test? A: Risk Management Of Course

Do you recall a post I did a while ago called … hmmm .. I have to go back and look up the title … oh yes,
“NotesOn: The Four Fundamental Life Cycles of IT” (linked above)? There is a diagram in there, the first one,
entitled “IT’s Life Cycles: Relationships between Product, Project, Risk Management and System/Software
Development Life Cycles, v6”. I’ll bring the diagram forward, but you really should go back and refresh your
memory if you have read it or study it in detail if you haven’t before going any further:

Take a moment to study this diagram. What is important to note in the context of this post is the “Risk
Management” objects that are part and parcel of the SDLC steps. The simple truth is that if you ignore, or
short cut, these Risk Management steps your system will not perform as desired and may not even run.

All good Project Managers are constantly aware that Risk Management is a critical part of their Role
description. It is not optional. It is not a “nice to do when we have time”. It is critical.

© DP Harshman All Rights Reserved Page 4 of 19
www.fromtheranks.com

What Is An SDLC?

For those of you who cannot rattle off the methodology steps of a basic SDLC, i.e. recite each and their
purpose verbatim in your dreams, let’s take a few minutes and explore one. Why? Because. If you don’t
understand what a Software (or System) Development Life Cycle is all about, you will have no clue as to why
Risk Management is vital, and, thus, likely no slightest interest in doing any more testing than you have to.

© DP Harshman All Rights Reserved Page 5 of 19
www.fromtheranks.com

Do you see how it “hangs together”? One logical step, or phase, leading into another? And leading back to
the prior if “something isn’t right?”

Do you notice the different Risk Levels depending on where you are in the Life Cycle? Or which part? Trust
me on this, each assignment is absolutely realistic. The only one that could be raised higher is Requirements,
an argument could be made that it should be Yellow instead of Green as, if done inadequately, you will have
nothing but problems and headaches.

I also included, in the diagram, visual proof that doing iterations are very much part of the standard SDLC.
There is no way any project would ever be successful if the project manager, and team, used a “pass through
once” approach. As the Agile folks would like you to believe is the case. Which it is not, of course.

By the way, the small “If missed at” table in the upper right hand corner? That is motivation for investing the
proper amount of time in requirements gathering. Finding requirements later on which were missed during
the Requirements Gathering phase, because, for instance, “everyone” was in a hurry, will, not may, but will
cost you dearly later on. In about the ratios shown.

Q: Why An SDLC? A: Risk Management Of Course

Above I noted that each SDLC phase has Risk Management activities associated with it. Which is true.

But.

Another way to look at it, and perhaps the correct way, is that each Risk Management phase has action steps
associated with it that have been gradually developed into a whole workable methodology. In other words,
project failures occurred, first, the risks of future failures were identified, second, and then approaches were
developed, honed and polished over and over to prevent those risks from occurring in the future.

I should note that the SDLC above is simply a topic specific version of development life cycles that have been
around for hundreds of years, at least. Architects, engineers, construction folks, city planners, etc., etc. have
been following an earlier “incarnation” of the SDLC for a long time. There is more about this in the above
referenced post.

Okay? Does that make sense? With some hands-on experience you’ll have a better understanding of why the
above SDLC model is used. As opposed to, say, Agile type approaches where one grinds and grinds and grinds
and grinds out small packets of deliverables (hopefully), potentially forever.

Agile is okay for maintenance and minor enhancements I suppose. But don’t EVER use it on major projects …
such as the “Obamacare” web site. You are doomed to failure (at the very least by horrific to toxic cost
overruns) if you do. Because, in part, due to the lack of a proper testing regimen (i.e. an incomplete, often
brushed off, testing routine).

© DP Harshman All Rights Reserved Page 6 of 19
www.fromtheranks.com

The Testing Classes & Types Diagram:

Speaking of testing, below is a diagram that lays out the Testing Classes and the types of testing within each.
Read from the bottom up. Take your time. Print it out and carry it in your portfolio or tape it to your wall.
Just leave the copyright and website data on please. [For full sized posters of this diagram please contact me
via the “Contact Us” page.]

Did you notice the iterative circle in the background? Testing is not a “one shot” deal. If you test and find
something is “broken” you fix and re-test. You don’t “maybe fix” and move on.

The object of testing is to make sure that we are delivering what the user has requested … and can use!

Remember our IT motto? “Helping them do “it” better, whatever “it” is”?

If it doesn’t work … if it blows up the first time they try to log in … if it seriously under-performs … if it …

Well, again, you get the idea.

© DP Harshman All Rights Reserved Page 7 of 19
www.fromtheranks.com

Behind The Diagram:

The diagram is nice, it can be a great visual reminder of all of the testing steps that your project needs to
account for (not all projects require all steps but all do need to have most of them done and signed off on all
the time) but some “behind the diagram” data would probably help.

Below is a spreadsheet laid out in reverse order, i.e. top-down, which should provide you with more detail; in
what each test means, common names for the tests (more than once the same test has been called something
else by someone else), and some rules of the road for each. I’ve broken up my master table into sections and
included key descriptions below each.

If you have questions, or you feel I have “completely missed the boat” on your favorite test (as in not including
its name) please let me know. By the way, the shading refers to the Risk Levels noted in the above diagram.

Requirements:

Technically, Requirements Gathering is not a “Testing Activity”. Except it is. Or parts of it. Here’s a few
questions that you must ask yourself as and after you talk to the executives, managers, entry clerks, folks on
the front line, … in other words while you are walking in their shoes in an effort to do it right:

1. On the surface, does it all make sense? If not, your notes and diagrams have failed the test.

© DP Harshman All Rights Reserved Page 8 of 19
www.fromtheranks.com

2. Can you, from end to end, think with it? If not, your efforts are incomplete and have failed the test.

3. As you review your notes and diagrams and so on, by yourself, with your team, and with the users, are
there gaps? Does the user often say “Oh, that reminds me!” and so on? Then you are not finished.

Prototyping/Proof Of Concept:

Both are forms of testing, even if they are not technically considered to be so. If you have a new idea, or wish
to use a new technology, or are unsure of a possible solution then … you do a prototype or a proof of concept.
They are virtually synonymous and often used interchangeably.

If the prototype fails, if the proof of concept never gets off the ground? Then that test failed and you have to
come up with a Plan B. Or maybe Plan C. Or. You have completely misfired on your gathering and there is
some part of the requirements that you do not yet fully understand. Do not brush off this step if there is any
uncertainty, even the least little bit in the back of your skull. Prove it out. First. Don’t wait for later when you
have likely locked yourself into the Plan, when it is too late and too expensive to change course. Make sense?

© DP Harshman All Rights Reserved Page 9 of 19
www.fromtheranks.com

Unit Tests:

Unit Tests are the first level of technical team testing and are conducted on the lowest level components
(objects) of the system to ensure they work per their requirements. Each object’s actual test results must
match its expected results; which must be declared before the test … not afterwards. The combined
individually discrete objects comprise the foundation of the system and if one or more don’t work the system
won’t work as required or desired. Though the name suggests otherwise, there are multiple facets of the Unit

© DP Harshman All Rights Reserved Page 10 of 19
www.fromtheranks.com

Test, as per the table above, and, where appropriate, each is done to prove the object is worthy. Please don’t
skip those that apply because it may seem inconvenient. Not doing so will cost a great deal more later on.

Code Review: included in the Unit Test Class is “Code Review”. The team which skips passed this, and
assumes that all developers always get it right, is setting itself up for “issues” down the road. Here are some
“rules of the road” for doing code reviews, and why to do code reviews:

1. Does the developer insist his/her code is fine and it’s a waste of time to walk through it? If so, this is a
minor red flag. Could be a confidence issue. Could be they didn’t fully understand the requirements
and are “afraid” to admit it. Could be they “did it their way”, which is to say maybe they didn’t follow
your coding standards (if you have any) and perhaps they tossed in a few extra “bells and whistles”.

2. Does the code scan easily? Can it be easily understood by someone familiar with the language? If not,
this is a definite red flag. Worst case scenario is that it takes an “Enigma Code/Decoder” machine from
WWII to interpret the code, to make sense of the code. More likely is that the developer has “short
handed” their variables and/or nested logic within logic within logic within logic, trying to jam it all into
one or two lines until it is nearly indecipherable. Maybe it actually works. But. The next developer
who comes along to maintain or enhance it is going to waste a LOT of time trying to figure out, trying
to interpret, the previous developer’s work.

3. Is the code commented? Are the requirements, the reason for building the object, included? At least
briefly? Is the basic logic of the code object commented? At least that much? If not, when even that
developer comes back six months later to “tweak it” they’ll have to figure out, all over again, what they
did and why. Comments don’t take up space in compiled objects so there’s no “space saving” value for
not doing it. Comments don’t take “a lot of time” either. Developers hate commenting but … tough.
They’re paid to do a job professionally.

© DP Harshman All Rights Reserved Page 11 of 19
www.fromtheranks.com

Integration:

This class of technical team testing is done to verify that all modularized unit level objects (logic pools)
communicate properly within their container, then each with one another, then externally with other systems,
and then, finally, function collectively as expected. Note: end-to-end is officially done during System and UA

© DP Harshman All Rights Reserved Page 12 of 19
www.fromtheranks.com

Testing but full Integrations often do a basic front-to-back as all the dots are connected for the first time. Test
targets typically include:

• Module to module data transfer (inbound and outbound)

• Module to database/data source (inbound and outbound)

• Security – authentication and authorization

• Access – module / data availability constraints

• User Interfaces – display and navigation and transition between modules

• Housekeeping of global and local variables, temp files, temp tables, etc.

• Etc.

Database / Data Integrity: this is called out separately though it is part of that testing (and part of Unit at a
lower level), as the technical team must ensure the “data flows”, i.e. that all database related logic works as
required and designed and to ensure the database itself properly manages the data it stores, i.e. that all
relationships and all update and insert and delete rules are correctly enforced. Again, do not brush this off in
the early testing stages hoping that it will all work properly later on. Building a system is not too dissimilar to
building a house. You can’t put the roof on until the foundation and framing are soundly in place.

© DP Harshman All Rights Reserved Page 13 of 19
www.fromtheranks.com

System:

I couldn’t figure out a way to “clip” this entire section of the table in one piece so I had to break it in two:

© DP Harshman All Rights Reserved Page 14 of 19
www.fromtheranks.com

Much of this class of testing is conducted by the entire team (techs and business SMEs) to verify that
individual modules and their processes at least adequately meet expectations, i.e. meet both technical (aka
non-functional) and functional (business / end user) requirements. Test targets include:

• User interfaces – data display, data edit, proper event handling, and system navigation

• Business rules enforcement, including business cycle management (ex: month end close)

• Work flows – routing, approvals, disapprovals, etc.

• Document management

• Multi-systems integration tests

• Database adds/deletes/updates (yes, you test this again)

• Database process logic via stored procedures, triggers, etc.

• Exceptions, i.e. proper exception handling.

Performance Testing: There are times when all three of the following types are “mushed together”,
considered to be the same thing, under the heading of Performance Testing, i.e. no real distinction is made at
all between them. That can be okay as long as (a) the types are understood and (b) a thoughtful
determination is made, based on specific known data, that Stress testing, for example, is not required, i.e.
there is no anticipated risk left unchallenged if one decides not to attempt to break the system. Learn these:

© DP Harshman All Rights Reserved Page 15 of 19
www.fromtheranks.com

Performance: does the system meet the (usually user) specified performance requirements, are
responses meeting normal period expectations. If not where is the system bottlenecking. Is it a code
problem? Is it a poor database design? Is the server(s) being used overloaded already? Is … An
experienced team will have preconceived expectations as to how well the entire system should perform,
they will assume or have a benchmark (ex: sub-2 second response to a user input or request) against which
to test their projected typical demands on the system.

Load: technical testing conducted to ensure that system wide response times meet expected maximum,
peak, demand and workload requirements. To be successful the application logic, the database design,
the access medium (client-server or web or mobile), the server architecture and the network must be sized
for peak and “tuned” to work together. Typically the test load is applied gradually, and increased
periodically while key indications of system performance are monitored. Though it does stress the system
it is not a stress test as you are not trying to break it (though, if it does you have learned something). This
type includes:

• Navigation and event request response times under max expected loads (ex: sub 2 second

response to load customer’s record)

• Transaction/Data retrieval and update response times under heaviest network traffic periods (ex:

sub 2 second response time to post completed invoice during busiest time of day)

• Largest report printing threshold (e: no more than 5 minutes to run Aging report for the month)

• Simulation of maximum expected peak user count, all or most of whom are hitting the server as

hard as is realistic for them to do (think Holiday Super Discount Sale! Loads)

A real life example is taking a system supposedly architected for 6,000 concurrent users and, using a load
testing tool (a piece of software that can simulate 1 to ‘n’ users doing one or multiple tasks), discovering it
blows up (or crashes if you prefer) at 600. I’ve seen this happen. More than once.

Stress: technical testing conducted to ensure the entire system continues to run and reaction times are
acceptable under anticipated maximum, or greater, workloads. The entire system (hardware, software,
databases, application servers, network servers, network pipes) is “pushed to its limits” to determine
where resources bottle-neck due to, for example, inadequate memory, insufficient network bandwidth,
CPU usage max’d (ex: pegged at 100%), data requests are I/O bound (too many outbound and/or inbound
demands for data or the requests are being backlogged), etc. The goal is to either break the system (and if
so what and when) or to prove the system will not crash and burn under heavy or heavier than worst-case
demands. Any component of the entire system is fair game – database servers, web servers, firewalls,
network switches and routers, app servers, load balancers, clusters if any, ...

Scenario: your average expected is 600 concurrent users at any given moment but at peak times the
demand may rise to greater than 6,000 and the customer orders may well jump from 50 every five minutes
to 500 every five minutes. What happens? What is the threshold beyond which the system falls to its
knees (or worse), temporarily or permanently.

© DP Harshman All Rights Reserved Page 16 of 19
www.fromtheranks.com

You can’t afford to design and build for an infinite number of users and an endless list of oddball Use Cases
but you may want to find the failure point and set throttles that will keep the system up and running.

Regression: technical and user testing conducted to ensure the functions and features of the previous release
that were not (should not have been) touched by the update(s) or bug fix(es) still function and perform as
before. There are two ways (at least) to do regression testing: (1) re-do/re-run every test script that was run
on the previous release against the new release candidate to ensure all requirements (functional and
technical) are still met, or (2) re-run every test script against a copy of the previous release – this confirms that
the previous release is not broken and that the test scripts are valid – and then run it against a copy of the
new release candidate. Do not add the test scripts for the new features, if there are any. Note: this is one
activity that should be done iteratively at all levels of testing (Unit on up) to help ensure the “new” didn’t
break the “old”, though more often than not it is only done (if then) before final User Acceptance Testing.

User Acceptance:

© DP Harshman All Rights Reserved Page 17 of 19
www.fromtheranks.com

Again, this section of the table grew too long with the adjustments so I split it in two:

User Acceptance testing is conducted by the users before release into production as the final “testing gate”.
The users confirm all elements of the system are working as requested/expected: look and feel, navigation,
displays, edit rules, configuration, performance, work flows, business rules, etc. UA (better known as UAT) is
done against the approved requirements, not against “wish lists” for future features. They may not do every
single element listed in the above table, though they are certainly welcome to contribute their time and
energy to them all if they wish, but they should be made aware of the results of all of them.

Following are a few of the key aspects of the overall User Acceptance Class of testing:

Conformance: user testing conducted to ensure that specific controls (S-Ox, PII, HIPPA, etc.) are met or
required regulations (EPA, Health & Safety, OSHA, …) are adequately addressed. [Personally, I often include
these tests as part of Functional as they too are system requirements. However. There may be occasions
when a stakeholder, or auditor perhaps, wishes to verify that the critical controls are in place and then confirm
compliance with the regulatory aspects, in which case these test cases could be extracted and run separately.]

Workflow / Scenarios: user testing conducted to ensure that all routing, approval, disapproval and escalation
processes built into the system work as required. All workflows and scenarios are done against written test
cases. My tool of choice is Microsoft’s TFS but there are others out there. If nothing else, though, use a

© DP Harshman All Rights Reserved Page 18 of 19
www.fromtheranks.com

spreadsheet where test case numbers are matched up against the applicable requirements’ numbers (and
don’t forget that work flows are requirements). Don’t “wing it”.

Ad Hoc (a.k.a. Free Form or Break-me): user testing conducted by the users, completely un-scripted and
often un-supervised to help drive out the “engineer’s logic” from the system (i.e. “If you do it exactly the way I
wrote it, it works”). They may, and should, attack navigation, go after date entry edit rules, event sequence
rules, yes/no/cancel logic, performance killing processes (to use our prior example, posting invoices while
requesting aging reports), etc. End users have found more bugs by not doing what they were “supposed to”
do than anyone could ever recall or would ever admit to.

Pilot: user testing conducted on a limited set of users as a near final user acceptance step. Typically done
with complex systems and/or where the new system is introducing significant changes in how the business
does business. In these events Organizational Change Management (OCM) steps are required to achieve full
acceptance of the new system and its new business processes and the Pilot test is one way to work the “OCM
Bugs” out of the OCM Program before introducing it to the entire company.

Parallel: user testing conducted at the same time between the old system and the new system, or the “old
version” of the system and the “new version” of the system, to ensure, primarily, that the business
functionality and data handling produce identical results. For instance if the users have an old General Ledger
system, which they know produces correct and accurate results they will continue to run it while inserting the
same data sets into the new General Ledger system. The end results, i.e. the financial reports, should at least
be identical numerically if not in formatting.

There are probably at least another dozen terms (ex: black box) but if you use the above as a guide and test
what needs to be tested, what you’re not sure of, in a methodical way, and non-methodical too sometimes,
you will obtain a workable system; not necessarily 100% perfect but workable, one that helps do “it” better.

Root Cause:

So why do major projects fail? Miserably? With the “Obamacare” site but one example? As noted above
under “Assumptions”, possibly poor requirements gathering, likely poor design methodology (both of which
speak to a poor system development life cycle, quite possibly an “Agile” style), but most certainly abysmal
testing protocols.

No question. No doubt. None at all. Because true testing would have led straight back to poor development
and build protocols, which probably would have led the experienced Project Manager or Manager back to
poor design which possibly would have led the well seasoned Auditor back to poor requirements. Simple.

© DP Harshman All Rights Reserved Page 19 of 19
www.fromtheranks.com

Summary:

Does this make sense? Is it now obvious to those of you, who may not have known how to Test, that the
“Obamacare” website (healthcare.gov, at the moment) “team” did NOT thoroughly test? Could not have
thoroughly tested?

An “excuser” gave as their reason for failure that it is one of the most complicated websites ever envisioned.
Horse-puckies. I can envision a LOT of sites that would take three and a half years (or more) and a hundred
million, or more, tax payer dollars which could be a LOT more complicated. And, because I and my teams
would apply standard SDLC methodologies, including Testing, when done, when it was Go-Live time, it would,
minor glitches aside, work.

If anyone in the Federal Government truly wants to know “Why?” look first at the development methodology
in “use” and then the testing protocols not being followed. [By the way, a usual edict behind this type of
result is “The rubber must meet the road, NOW!”] As I said in the beginning, the “Obamacare” website is an
absolute text book case on how “not” to build a system.

Hope this helps,

DP Harshman

	Introduction (V1.3):
	Ref:
	Assumptions:
	Background:
	Q: Why Test? A: Risk Management Of Course
	What Is An SDLC?
	Q: Why An SDLC? A: Risk Management Of Course
	The Testing Classes & Types Diagram:
	Behind The Diagram:
	Requirements:
	Prototyping/Proof Of Concept:
	Unit Tests:
	Integration:
	System:
	User Acceptance:

	Root Cause:
	Summary:

